Source code for cellphe.processing.image

"""
    cellphe.processing.image
    ~~~~~~~~~~~~~~~~~~~~~~~~

    Functions related to processing images.
"""

# pylint doesn't recognise grid_points_in_poly
# pylint: disable=no-name-in-module
from __future__ import annotations

from dataclasses import dataclass

import numpy as np
from matplotlib.path import Path
from skimage.measure import grid_points_in_poly
from skimage.segmentation import flood

from cellphe.processing.roi import roi_corners


[docs] def normalise_image(image: np.array, lower: int, upper: int) -> np.array: """Normalises an image to a specified range. :param image: The image to normalise as a 2D numpy array. :param lower: The lower bound of the target normalisation range, as an integer. :param upper: The upper boundo of the target normalisation range, as an integer. :return: The normalised image as a 2D numpy array. """ return (image - image.min()) / (image.max() - image.min()) * (upper - lower) + lower
[docs] @dataclass class SubImage: """ Represents a sub-image, that is a portion of an image corresponding to a specific region-of-interest (ROI). Properties: - sub_image: A 2D array representing the image truncated to the bounds of the ROI. - type_mask: A 2D array the same size as the sub-image detailing which pixels are either inside the ROI (1), outside (-1), or on the ROI border (0). - centroid: A 1D array of length 2 containing the (x,y) points at the centre of the ROI. """ sub_image: np.array type_mask: np.array centroid: np.array
[docs] def create_type_mask_skimage(roi: np.array) -> np.array: """Creates a type mask for a given ROI in an image. This returns a 2D integer array representing the sub-image of the cell that the ROI covers, where: - Pixels outside the cell are given a value of -1 - Pixels on the ROI border are assigned 0 - Pixels inside the ROI border are assigned 1 This method uses skimage's grid_points_in_poly, a point in polygon algorithm similar to Matplotlib's. :param image: 2D array of the image pixels. :param roi: 2D array of x,y coordinates. :return: Returns a 2D array representing the image where the values are either -1, 0, or 1. """ maxcol, maxrow = roi.max(axis=0) + 1 mask = np.full((maxrow, maxcol), -1) grid_mask = grid_points_in_poly((maxrow, maxcol), np.flip(roi, axis=1)) mask[grid_mask] = 1 # Set ROI boundaries as 0 mask[roi[:, 1], roi[:, 0]] = 0 return mask
[docs] def create_type_mask_ray_cast_4(roi: np.array) -> np.array: """Creates a type mask for a given ROI in an image. This returns a 2D integer array representing the sub-image of the cell that the ROI covers, where: - Pixels outside the cell are given a value of -1 - Pixels on the ROI border are assigned 0 - Pixels inside the ROI border are assigned 1 This is a modified Ray Casting algorithm that rather than defining interior pixels as those that lie within an odd number of boundary crossings in 1 direction, it identifies them as lying within a relaxed boundary on all 4 sides. The relaxed boundary includes any points after the first boundary crossing. This is because there are known limitations with the odd-numbered approach with this dataset, which using all 4 directions is attempting to resolve. :param image: 2D array of the image pixels. :param roi: 2D array of x,y coordinates. :return: Returns a 2D array representing the image where the values are either -1, 0, or 1. """ maxcol, maxrow = roi.max(axis=0) + 1 mask = np.full((maxrow, maxcol), -1) interior_mask = np.zeros((maxrow, maxcol)) # Set ROI boundaries as 0 interior_mask[roi[:, 1], roi[:, 0]] = 1 # Get the number of crossings in 4 directions lr = interior_mask.cumsum(axis=1) > 0 tb = interior_mask.cumsum(axis=0) > 0 bt = np.cumsum(interior_mask[::-1, :], axis=0)[::-1, :] > 0 rl = np.cumsum(interior_mask[:, ::-1], axis=1)[:, ::-1] > 0 grid_mask = lr & tb & bt & rl mask[grid_mask] = 1 mask[roi[:, 1], roi[:, 0]] = 0 return mask
[docs] def create_type_mask_matplotlib(roi: np.array) -> np.array: """Creates a type mask for a given ROI in an image. This returns a 2D integer array representing the sub-image of the cell that the ROI covers, where: - Pixels outside the cell are given a value of -1 - Pixels on the ROI border are assigned 0 - Pixels inside the ROI border are assigned 1 This method uses matplotlib's Path module and 'contains_points' methods on all the points in the image subset to see if they reside within the ROI. :param image: 2D array of the image pixels. :param roi: 2D array of x,y coordinates. :return: Returns a 2D array representing the image where the values are either -1, 0, or 1. """ maxcol, maxrow = roi.max(axis=0) + 1 mask = np.full((maxrow, maxcol), -1) # Get the indices of every coordinate in the image (row, col) image_indices = np.indices(mask.shape).reshape(2, mask.size).T # Convert into (x,y) coordinates image_indices = np.flip(image_indices, axis=1) # See if the ROI contains these values poly_mask = Path(roi).contains_points(image_indices).reshape(mask.shape) # Set these values in the output to 0 mask[poly_mask] = 1 # Set ROI boundaries as 0 mask[roi[:, 1], roi[:, 0]] = 0 return mask
[docs] def find_crossing_points(corners: np.array, shape: np.array) -> np.array: # pylint: disable=too-many-locals """Finds the crossing points for a ray entering a given polygon. This implementation is based the following algorithm: https://www.alienryderflex.com/polygon_fill/ :param corners: The corners that define the polygon. Must be ordered either clockwise or anti-clockwise. :param shape: The maximum shape of the polygon in (height, width). :return: A 2D array of shape (height, width) of type integer, where each value corresponds to the number of boundary crossings at this pixel. """ # Setup height = shape[1] - 1 crossings = np.zeros((shape[1], shape[0])).astype(int) corner_y = corners[:, 1] corner_x = corners[:, 0] # The algorithm iterates through the corners in path order in pairs, so # keep a rotated copy to use as the 'previous' corner prev_corner_y = np.roll(corner_y, 1) prev_corner_x = np.roll(corner_x, 1) # The original algorithm iterates row-by-row. We want to vectorise this so # will create data structures to hold all the corners for each row prev_corner_x = np.tile(prev_corner_x, height) prev_corner_y = np.tile(prev_corner_y, height) corner_x = np.tile(corner_x, height) corner_y = np.tile(corner_y, height) pixel_y = np.repeat(np.arange(height), corners.shape[0]) # The crux of the algorithm. Find nodes, i.e. crossing points has_node = ((corner_y < pixel_y) & (prev_corner_y >= pixel_y)) | ((prev_corner_y < pixel_y) & (corner_y >= pixel_y)) # Calculate the x-values at each node polyx = corner_x[has_node] polyy = corner_y[has_node] prevy = prev_corner_y[has_node] prevx = prev_corner_x[has_node] new_y = pixel_y[has_node] new_x = (polyx + (new_y - polyy) / (prevy - polyy) * (prevx - polyx)).astype(int) # Save the number of crossings at each node for x, y in zip(new_x, new_y): crossings[y, x] += 1 return crossings
[docs] def create_type_mask_fill_polygon(roi): """Creates a type mask for a given ROI in an image. This returns a 2D integer array representing the sub-image of the cell that the ROI covers, where: - Pixels outside the cell are given a value of -1 - Pixels on the ROI border are assigned 0 - Pixels inside the ROI border are assigned 1 This implementation is based the following algorithm: https://www.alienryderflex.com/polygon_fill/ :param image: 2D array of the image pixels. :param roi: 2D array of x,y coordinates. :return: Returns a 2D array representing the image where the values are either -1, 0, or 1. """ maxcol, maxrow = roi.max(axis=0) + 1 # get corners of the polygon, needed for the following algorithm. corners = roi_corners(roi) # Find the boundary crossings crossing_points = find_crossing_points(corners, roi.max(axis=0) + 1) # Interior locations are those with an odd number of boundary crossings mask_vec = np.zeros((maxrow, maxcol)).astype(int) mask_rows = crossing_points.cumsum(axis=1) mask_vec[mask_rows % 2 == 1] = 1 # Set anything else as outside the cell mask_vec[mask_vec == 0] = -1 # Add ROI boundary mask_vec[roi[:, 1], roi[:, 0]] = 0 return mask_vec
[docs] def create_type_mask_flood_fill(roi: np.array) -> np.array: """Creates a type mask for a given ROI in an image. This returns a 2D integer array representing the sub-image of the cell that the ROI covers, where: - Pixels outside the cell are given a value of -1 - Pixels on the ROI border are assigned 0 - Pixels inside the ROI border are assigned 1 This method uses a floodfill algorithm, implemented in skimage. :param image: 2D array of the image pixels. :param roi: 2D array of x,y coordinates. :return: Returns a 2D array representing the image where the values are either -1, 0, or 1. """ # Initialise the mask maxcol, maxrow = roi.max(axis=0) + 1 mask = np.full((maxrow, maxcol), -1) mask[roi[:, 1], roi[:, 0]] = 0 # Fill values inside the ROI to 1 using floodfill # Using the median as a guaranteed point inside the ROI. # Not great, but given that the ROIs must all be 8x8 then should be # sufficient. Else can use Shapely's representative_point start_col, start_row = tuple(np.median(roi, axis=0).astype(int)) interior_mask = flood(mask, (start_row, start_col), connectivity=1) mask[interior_mask] = 1 return mask
[docs] def create_type_mask_flood_fill_negative(roi: np.array) -> np.array: """Creates a type mask for a given ROI in an image. This returns a 2D integer array representing the sub-image of the cell that the ROI covers, where: - Pixels outside the cell are given a value of -1 - Pixels on the ROI border are assigned 0 - Pixels inside the ROI border are assigned 1 This method uses a floodfill algorithm, implemented in skimage. :param image: 2D array of the image pixels. :param roi: 2D array of x,y coordinates. :return: Returns a 2D array representing the image where the values are either -1, 0, or 1. """ # Initialise the mask with extra 1 buffer around the outside so can # guarantee that 0,0 is outside maxcol, maxrow = roi.max(axis=0) + 3 mask = np.full((maxrow, maxcol), 1) mask[roi[:, 1] + 1, roi[:, 0] + 1] = 0 # Fill values inside the ROI to 1 using floodfill # Using the median as a guaranteed point inside the ROI. # Not great, but given that the ROIs must all be 8x8 then should be # sufficient. Else can use Shapely's representative_point exterior_mask = flood(mask, (0, 0), connectivity=1) mask[exterior_mask] = -1 # Remove the buffer return mask[1:-1, 1:-1]
[docs] def extract_subimage(image: np.array, roi: np.array, method: str = "flood_fill_negative") -> SubImage: """Extracts a sub-image and relevant statistics from a given image and ROI. :param image: The image as a 2D Numpy array. :param roi: The region of interest as an Mx2 Numpy array. :return: A SubImage instance. """ # Calculate centroid before subsetting roi, as units are relative to the # entire frame centroid = roi.mean(axis=0) # Subset image to ROI xmin, ymin = roi.min(axis=0) xmax, ymax = roi.max(axis=0) image_subset = image[int(ymin) : (int(ymax) + 1), int(xmin) : (int(xmax) + 1)] roi = roi - roi.min(axis=0) algs = { "fill_polygon": create_type_mask_fill_polygon, "matplotlib": create_type_mask_matplotlib, "flood_fill": create_type_mask_flood_fill, "flood_fill_negative": create_type_mask_flood_fill_negative, "skimage": create_type_mask_skimage, "ray_cast_4": create_type_mask_ray_cast_4, } alg = algs[method] mask_subset = alg(roi) return SubImage(sub_image=image_subset, type_mask=mask_subset, centroid=centroid)