"""
cellphe.processing.roi
~~~~~~~~~~~~~~~~~~~~~~
Functions related to processing ROIs.
"""
from __future__ import annotations
import numpy as np
from roifile import ImagejRoi, roiwrite
# pylint doesn't recognise line
# pylint: disable=no-name-in-module
from skimage.draw import line
[docs]
def boundary_vertices(roi: np.array) -> np.array:
"""Returns the vertices that lie directly on the boundary of an ROI, i.e.
removing any additional vertices that do not directly impact on the interior
area.
:param roi: 2D array of x,y coordinates.
:return: A 2D array of x,y coordinates.
"""
# Create a 2D array so can vectorise the search with a buffer in every
# direction so can get the full 3x3 window around a point
roi = roi + 1 # Padding from top left
xrange, yrange = roi.max(axis=0) - roi.min(axis=0) + 3 # Padding at both ends
grid = np.zeros((yrange, xrange))
grid[roi[:, 1], roi[:, 0]] = 1
# Iterate through coordinates finding all those where there are at least
while True:
to_remove = []
for i, (col, row) in enumerate(roi):
# subtract itself
num_neighbours = grid[(row - 1) : (row + 2), (col - 1) : (col + 2)].sum() - 1
if num_neighbours < 2:
to_remove.append(i)
if len(to_remove) == 0:
break
# Remove the extraneous points from both ROI list and grid
roi_to_remove = roi[to_remove, :]
grid[roi_to_remove[:, 1], roi_to_remove[:, 0]] = 0
roi = np.delete(roi, to_remove, axis=0)
# Remove the padding
return roi - 1
[docs]
def get_diagonals(mat: np.array) -> list[np.array]:
"""Retrieves the diagonals (both forward and backward) from a matrix.
NB: There's a manual version here, which was found to be slower than Numpy
but it's a useful resource providing the equations relating x,y to the
diagonal positions. https://stackoverflow.com/a/43311126/1020006
:parameter mat: A 2D Numpy array.
:return: A 2D matrix containing the diagonals on each row, right padded with
zeros.
"""
maxy, maxx = mat.shape
max_diag = min(maxy, maxx)
bdiag = [mat.diagonal(i) for i in range(-maxy + 1, maxx)]
fdiag = [np.flip(mat, axis=0).diagonal(i) for i in range(-maxy + 1, maxx)]
# Pad so can get a 2D matrix so can vectorize cumsums
bdiag = np.array([np.pad(x, [0, max_diag - x.size]) for x in bdiag])
fdiag = np.array([np.pad(x, [0, max_diag - x.size]) for x in fdiag])
return bdiag, fdiag
[docs]
def get_corner_mask(mat: np.array) -> np.array:
"""Finds the corners of a masked boundary.
The boundary must be split up into its constituent dimensions, so that the
input mat is a 2D array where the first dimension (rows) each hold another
dimension, be it rows, columns, or diagonals in the original matrix.
The data should 0s and 1s, where a 1 indicates a boundary pixel and a 0
otherwise.
Corners (shown in parentheses) are found as points where the pixels either
change from 0 -> (1) -> 1, or 1 -> (1) -> 0. These are identified by taking
the second difference, which will equal to -1 in both cases. The rows are
padded with starting and trailing 0s in case the boundary lies on the
dimension edge.
:parameter mat: A 2D array containing the dimensions of the original matrix. See
the description and usage for more details.
:return: A boolean array the same dimensions as mat, where a True indicates
that that vertex is a corner.
"""
return np.diff(np.pad(mat, ((0, 0), (1, 1))), 2, axis=1) == -1
[docs]
def roi_corners(roi: np.array) -> np.array:
# pylint: disable=too-many-locals
"""Gets the corners from an ROI, i.e. any vertex that connect 2 sides.
:param roi: 2D array of x,y coordinates.
:return: A 2D array of x,y coordinates.
"""
# Form grid
xrange, yrange = roi.max(axis=0) - roi.min(axis=0) + 1
grid = np.zeros((yrange, xrange))
grid[roi[:, 1], roi[:, 0]] = 1
# Get boolean masks of corners in all 3 dimensions
row_corners = get_corner_mask(grid)
col_corners = get_corner_mask(grid.T)
bdiags, fdiags = get_diagonals(grid)
bdiag_corners = get_corner_mask(bdiags)
fdiag_corners = get_corner_mask(fdiags)
# Get these as indices of the 2D boundary layers
row_rows, row_cols = np.nonzero(row_corners)
col_cols, col_rows = np.nonzero(col_corners)
bdiag_rows, bdiag_cols = np.nonzero(bdiag_corners)
fdiag_rows, fdiag_cols = np.nonzero(fdiag_corners)
# Convert back to coordinates of the original grid
# Trivial for the row and column dimensions
row_corners = np.vstack((row_rows, row_cols)).T
col_corners = np.vstack((col_rows, col_cols)).T
# Bit more involved for the diagonals!
n_rows = grid.shape[0]
fdiag_rows_2 = np.minimum(fdiag_rows - fdiag_cols, n_rows - 1 - fdiag_cols)
fdiag_cols_2 = fdiag_rows - fdiag_rows_2
fdiag_corners = np.vstack((fdiag_rows_2, fdiag_cols_2)).T
bdiag_rows_2 = np.maximum(n_rows - bdiag_rows + bdiag_cols - 1, bdiag_cols)
bdiag_cols_2 = np.maximum(bdiag_rows - n_rows + bdiag_cols + 1, bdiag_cols)
bdiag_corners = np.vstack((bdiag_rows_2, bdiag_cols_2)).T
# Combine and get unique set
all_corners = np.vstack((row_corners, col_corners, fdiag_corners, bdiag_corners))
all_corners = np.unique(all_corners, axis=0)
# Flip back to x,y
all_corners = np.flip(all_corners, axis=1)
# Return in the order of the original ROI path
roi_order = np.array([np.where((roi == x).all(axis=1))[0][0] for x in all_corners]).argsort()
corner_order = np.arange(all_corners.shape[0])[roi_order]
return all_corners[corner_order]
[docs]
def interpolate_between_points(coords: np.array) -> np.array:
"""
Interpolates between the ROI coordinates to ensure there aren't any breaks
in the boundary.
All the downstream CellPhe analysis assumes that there aren't any gaps in
the ROIs. This function guarantees that.
:param coords: A 2D Numpy array of coordinate pairs in the form (x,y).
:return: An array in the same format as coords with either the same number
of coordinates, or more.
"""
new_coords_raw = []
# Iterate through each consecutive coordinate pair interpolating a
# line between them
# NB: assumes that ROIs are stored in order, which they should be from
# TrackMate
for i in range(1, coords.shape[0]):
# These are in format (y, x) (i.e. row/column)
new_coords_raw.append(line(coords[i - 1, 1], coords[i - 1, 0], coords[i, 1], coords[i, 0]))
# Ensure first and last point are connected
new_coords_raw.append(line(coords[-1, 1], coords[-1, 0], coords[0, 1], coords[0, 0]))
# Convert back to a single 2D numpy array in (y,x) format
new_coords = np.concatenate([np.asarray(x).T for x in new_coords_raw])
# Remove duplicate coordinates
# Have to do a 2-step process as np.unique() sorts by default and cannot
# be told not to
_, inds = np.unique(new_coords, axis=0, return_index=True)
new_coords = new_coords[np.sort(inds)]
# Convert back to (x,y)
new_coords = np.flip(new_coords, axis=1)
return new_coords
[docs]
def save_rois(rois: list[dict], filename: str = "rois.zip"):
"""
Saves ROIs to disk.
:param rois: List of dicts, each one representing an ROI with elements:
- coords: 2D numpy array containing the ROI coordinates.
- CellID: Cell ID
- FrameID: Frame ID
- filename: Filename to save the ROI to
:param filename: Filename of output archive.
:return: None, writes to disk as a side-effect.
"""
roi_objs = []
for roi in rois:
new_coords = interpolate_between_points(roi["coords"].astype(int))
roi_obj = ImagejRoi.frompoints(new_coords)
roi_obj.position = roi["FrameID"]
roi_obj.name = roi["Filename"]
roi_objs.append(roi_obj)
roiwrite(filename, roi_objs)