Source code for cellphe.processing.roi

"""
    cellphe.processing.roi
    ~~~~~~~~~~~~~~~~~~~~~~

    Functions related to processing ROIs.
"""

from __future__ import annotations

import numpy as np
from roifile import ImagejRoi, roiwrite

# pylint doesn't recognise line
# pylint: disable=no-name-in-module
from skimage.draw import line


[docs] def boundary_vertices(roi: np.array) -> np.array: """Returns the vertices that lie directly on the boundary of an ROI, i.e. removing any additional vertices that do not directly impact on the interior area. :param roi: 2D array of x,y coordinates. :return: A 2D array of x,y coordinates. """ # Create a 2D array so can vectorise the search with a buffer in every # direction so can get the full 3x3 window around a point roi = roi + 1 # Padding from top left xrange, yrange = roi.max(axis=0) - roi.min(axis=0) + 3 # Padding at both ends grid = np.zeros((yrange, xrange)) grid[roi[:, 1], roi[:, 0]] = 1 # Iterate through coordinates finding all those where there are at least while True: to_remove = [] for i, (col, row) in enumerate(roi): # subtract itself num_neighbours = grid[(row - 1) : (row + 2), (col - 1) : (col + 2)].sum() - 1 if num_neighbours < 2: to_remove.append(i) if len(to_remove) == 0: break # Remove the extraneous points from both ROI list and grid roi_to_remove = roi[to_remove, :] grid[roi_to_remove[:, 1], roi_to_remove[:, 0]] = 0 roi = np.delete(roi, to_remove, axis=0) # Remove the padding return roi - 1
[docs] def get_diagonals(mat: np.array) -> list[np.array]: """Retrieves the diagonals (both forward and backward) from a matrix. NB: There's a manual version here, which was found to be slower than Numpy but it's a useful resource providing the equations relating x,y to the diagonal positions. https://stackoverflow.com/a/43311126/1020006 :parameter mat: A 2D Numpy array. :return: A 2D matrix containing the diagonals on each row, right padded with zeros. """ maxy, maxx = mat.shape max_diag = min(maxy, maxx) bdiag = [mat.diagonal(i) for i in range(-maxy + 1, maxx)] fdiag = [np.flip(mat, axis=0).diagonal(i) for i in range(-maxy + 1, maxx)] # Pad so can get a 2D matrix so can vectorize cumsums bdiag = np.array([np.pad(x, [0, max_diag - x.size]) for x in bdiag]) fdiag = np.array([np.pad(x, [0, max_diag - x.size]) for x in fdiag]) return bdiag, fdiag
[docs] def get_corner_mask(mat: np.array) -> np.array: """Finds the corners of a masked boundary. The boundary must be split up into its constituent dimensions, so that the input mat is a 2D array where the first dimension (rows) each hold another dimension, be it rows, columns, or diagonals in the original matrix. The data should 0s and 1s, where a 1 indicates a boundary pixel and a 0 otherwise. Corners (shown in parentheses) are found as points where the pixels either change from 0 -> (1) -> 1, or 1 -> (1) -> 0. These are identified by taking the second difference, which will equal to -1 in both cases. The rows are padded with starting and trailing 0s in case the boundary lies on the dimension edge. :parameter mat: A 2D array containing the dimensions of the original matrix. See the description and usage for more details. :return: A boolean array the same dimensions as mat, where a True indicates that that vertex is a corner. """ return np.diff(np.pad(mat, ((0, 0), (1, 1))), 2, axis=1) == -1
[docs] def roi_corners(roi: np.array) -> np.array: # pylint: disable=too-many-locals """Gets the corners from an ROI, i.e. any vertex that connect 2 sides. :param roi: 2D array of x,y coordinates. :return: A 2D array of x,y coordinates. """ # Form grid xrange, yrange = roi.max(axis=0) - roi.min(axis=0) + 1 grid = np.zeros((yrange, xrange)) grid[roi[:, 1], roi[:, 0]] = 1 # Get boolean masks of corners in all 3 dimensions row_corners = get_corner_mask(grid) col_corners = get_corner_mask(grid.T) bdiags, fdiags = get_diagonals(grid) bdiag_corners = get_corner_mask(bdiags) fdiag_corners = get_corner_mask(fdiags) # Get these as indices of the 2D boundary layers row_rows, row_cols = np.nonzero(row_corners) col_cols, col_rows = np.nonzero(col_corners) bdiag_rows, bdiag_cols = np.nonzero(bdiag_corners) fdiag_rows, fdiag_cols = np.nonzero(fdiag_corners) # Convert back to coordinates of the original grid # Trivial for the row and column dimensions row_corners = np.vstack((row_rows, row_cols)).T col_corners = np.vstack((col_rows, col_cols)).T # Bit more involved for the diagonals! n_rows = grid.shape[0] fdiag_rows_2 = np.minimum(fdiag_rows - fdiag_cols, n_rows - 1 - fdiag_cols) fdiag_cols_2 = fdiag_rows - fdiag_rows_2 fdiag_corners = np.vstack((fdiag_rows_2, fdiag_cols_2)).T bdiag_rows_2 = np.maximum(n_rows - bdiag_rows + bdiag_cols - 1, bdiag_cols) bdiag_cols_2 = np.maximum(bdiag_rows - n_rows + bdiag_cols + 1, bdiag_cols) bdiag_corners = np.vstack((bdiag_rows_2, bdiag_cols_2)).T # Combine and get unique set all_corners = np.vstack((row_corners, col_corners, fdiag_corners, bdiag_corners)) all_corners = np.unique(all_corners, axis=0) # Flip back to x,y all_corners = np.flip(all_corners, axis=1) # Return in the order of the original ROI path roi_order = np.array([np.where((roi == x).all(axis=1))[0][0] for x in all_corners]).argsort() corner_order = np.arange(all_corners.shape[0])[roi_order] return all_corners[corner_order]
[docs] def interpolate_between_points(coords: np.array) -> np.array: """ Interpolates between the ROI coordinates to ensure there aren't any breaks in the boundary. All the downstream CellPhe analysis assumes that there aren't any gaps in the ROIs. This function guarantees that. :param coords: A 2D Numpy array of coordinate pairs in the form (x,y). :return: An array in the same format as coords with either the same number of coordinates, or more. """ new_coords_raw = [] # Iterate through each consecutive coordinate pair interpolating a # line between them # NB: assumes that ROIs are stored in order, which they should be from # TrackMate for i in range(1, coords.shape[0]): # These are in format (y, x) (i.e. row/column) new_coords_raw.append(line(coords[i - 1, 1], coords[i - 1, 0], coords[i, 1], coords[i, 0])) # Ensure first and last point are connected new_coords_raw.append(line(coords[-1, 1], coords[-1, 0], coords[0, 1], coords[0, 0])) # Convert back to a single 2D numpy array in (y,x) format new_coords = np.concatenate([np.asarray(x).T for x in new_coords_raw]) # Remove duplicate coordinates # Have to do a 2-step process as np.unique() sorts by default and cannot # be told not to _, inds = np.unique(new_coords, axis=0, return_index=True) new_coords = new_coords[np.sort(inds)] # Convert back to (x,y) new_coords = np.flip(new_coords, axis=1) return new_coords
[docs] def save_rois(rois: list[dict], filename: str = "rois.zip"): """ Saves ROIs to disk. :param rois: List of dicts, each one representing an ROI with elements: - coords: 2D numpy array containing the ROI coordinates. - CellID: Cell ID - FrameID: Frame ID - filename: Filename to save the ROI to :param filename: Filename of output archive. :return: None, writes to disk as a side-effect. """ roi_objs = [] for roi in rois: new_coords = interpolate_between_points(roi["coords"].astype(int)) roi_obj = ImagejRoi.frompoints(new_coords) roi_obj.position = roi["FrameID"] roi_obj.name = roi["Filename"] roi_objs.append(roi_obj) roiwrite(filename, roi_objs)